Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(4): 1259-1272, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513222

RESUMO

We present the newly isolated Streptomyces sungeiensis SD3 strain as a promising microbial chassis for heterologous production of secondary metabolites. S. sungeiensis SD3 exhibits several advantageous traits as a microbial chassis, including genetic tractability, rapid growth, susceptibility to antibiotics, and metabolic capability supporting secondary metabolism. Genomic and transcriptomic sequencing unveiled the primary metabolic capabilities and secondary biosynthetic pathways of S. sungeiensis SD3, including a previously unknown pathway responsible for the biosynthesis of streptazone B1. The unique placement of S. sungeiensis SD3 in the phylogenetic tree designates it as a type strain, setting it apart from other frequently employed Streptomyces chassis. This distinction makes it the preferred chassis for expressing biosynthetic gene clusters (BGCs) derived from strains within the same phylogenetic or neighboring phylogenetic clade. The successful expression of secondary biosynthetic pathways from a closely related yet slow-growing strain underscores the utility of S. sungeiensis SD3 as a heterologous expression chassis. Validation of CRISPR/Cas9-assisted genetic tools for chromosomal deletion and insertion paved the way for further strain improvement and BGC refactoring through rational genome editing. The addition of S. sungeiensis SD3 to the heterologous chassis toolkit will facilitate the discovery and production of secondary metabolites.


Assuntos
Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Filogenia , Antibacterianos/metabolismo , Genômica , Metabolismo Secundário/genética , Família Multigênica
2.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340793

RESUMO

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Transcrição Gênica , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepção de Quorum , Sistemas do Segundo Mensageiro , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
3.
Biotechnol J ; 19(2): e2300542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403404

RESUMO

Bacterial second messenger c-di-GMP upregulation is associated with the transition from planktonic to sessile microbial lifestyle, inhibiting cellular motility, and virulence. However, in-depth elucidation of the cellular processes resulting from c-di-GMP upregulation has not been fully explored. Here, we report the role of upregulated cellular c-di-GMP in promoting planktonic cell growth of Escherichia coli K12 and Pseudomonas aeruginosa PAO1. We found a rapid expansion of cellular growth during initial cellular c-di-GMP upregulation, resulting in a larger planktonic bacterial population. The initial increase in c-di-GMP levels promotes bacterial swarming motility during the growth phase, which is subsequently inhibited by the continuous increase of c-di-GMP, and ultimately facilitates the formation of biofilms. We demonstrated that c-di-GMP upregulation triggers key bacterial genes linked to bacterial growth, swarming motility, and biofilm formation. These genes are mainly controlled by the master regulatory genes csgD and csrA. This study provides us a glimpse of the bacterial behavior of evading potential threats through adapting lifestyle changes via c-di-GMP regulation.


Assuntos
Proteínas de Bactérias , GMP Cíclico/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação para Cima , Biofilmes , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
4.
Chembiochem ; 25(1): e202300590, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37908177

RESUMO

Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.


Assuntos
Glicina , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Polienos
5.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37222477

RESUMO

Cyclic dimeric adenosine monophosphate (cyclic-di-AMP) is a nucleotide second messenger present in Gram-positive bacteria, Gram-negative bacteria and some Archaea. The intracellular concentration of cyclic-di-AMP is adjusted in response to environmental and cellular cues, primarily through the activities of synthesis and degradation enzymes. It performs its role by binding to protein and riboswitch receptors, many of which contribute to osmoregulation. Imbalances in cyclic-di-AMP can lead to pleiotropic phenotypes, affecting aspects such as growth, biofilm formation, virulence, and resistance to osmotic, acid, and antibiotic stressors. This review focuses on cyclic-di-AMP signalling in lactic acid bacteria (LAB) incorporating recent experimental discoveries and presenting a genomic analysis of signalling components from a variety of LAB, including those found in food, and commensal, probiotic, and pathogenic species. All LAB possess enzymes for the synthesis and degradation of cyclic-di-AMP, but are highly variable with regards to the receptors they possess. Studies in Lactococcus and Streptococcus have revealed a conserved function for cyclic-di-AMP in inhibiting the transport of potassium and glycine betaine, either through direct binding to transporters or to a transcriptional regulator. Structural analysis of several cyclic-di-AMP receptors from LAB has also provided insights into how this nucleotide exerts its influence.


Assuntos
AMP Cíclico , Lactobacillales , AMP Cíclico/metabolismo , Lactobacillales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Monofosfato de Adenosina
6.
Appl Environ Microbiol ; 88(23): e0120822, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36350133

RESUMO

Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[α]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC50 values ranging from 0.9 to 1.2 µg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster (bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.


Assuntos
Policetídeos , Streptomyces , Humanos , Vias Biossintéticas/genética , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Streptomyces/metabolismo , Linhagem Celular Tumoral
7.
Front Microbiol ; 13: 1012115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246293

RESUMO

Lophiotrema is a genus of ascomycetous fungi within the family Lophiotremataceae. Members of this genus have been isolated as endophytes from a wide range of host plants and also from plant debris within terrestrial and marine habitats, where they are thought to function as saprobes. Lophiotrema sp. F6932 was isolated from white mangrove (Avicennia officinalis) in Pulau Ubin Island, Singapore. Crude extracts from the fungus exhibited strong antibacterial activity, and bioassay-guided isolation and structure elucidation of bioactive constituents led to the isolation of palmarumycin C8 and a new analog palmarumycin CP30. Whole-genome sequencing analysis resulted in the identification of a putative type 1 iterative PKS (iPKS) predicated to be involved in the biosynthesis of palmarumycins. To verify the involvement of palmarumycin (PAL) gene cluster in the biosynthesis of these compounds, we employed ribonucleoprotein (RNP)-mediated CRISPR-Cas9 to induce targeted deletion of the ketosynthase (KS) domain in PAL. Double-strand breaks (DSBs) upstream and downstream of the KS domain was followed by homology-directed repair (HDR) with a hygromycin resistance cassette flanked by a 50 bp of homology on both sides of the DSBs. The resultant deletion mutants displayed completely different phenotypes compared to the wild-type strain, as they had different colony morphology and were no longer able to produce palmarumycins or melanin. This study, therefore, confirms the involvement of PAL in the biosynthesis of palmarumycins, and paves the way for implementing a similar approach in the characterization of other gene clusters of interest in this largely understudied fungal strain.

8.
Chembiochem ; 23(22): e202200457, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36161451

RESUMO

A family of novel cyclic lipopeptides named tasikamides A-H (Tsk A-H) were discovered recently in Streptomyces tasikensis P46. Aside from the unique cyclic pentapeptide scaffold shared by the tasikamides, Tsk A-C contain a hydrazone bridge that connects the cyclic pentapeptide to the lipophilic alkyl 5-hydroxylanthranilate (AHA) moiety. Here we report the production of tasikamides I-K (Tsk I-K) by a mutant strain of S. tasikensis P46 that overexpresses two pathway-specific transcription regulators. Unlike Tsk A-C, Tsk I-K feature a rare enaminone-bridge that links the cyclic peptide scaffold to the AHA moiety. Our experimental data suggest that Tsk I-K are generated by the coupling of two biosynthetic pathways via a nonenzymatic condensation reaction between an arylamine and a ß-keto aldehyde-containing precursor. The results underscore the nucleophilic and electrophilic reactivity of the ß-keto aldehyde moiety and its ability to promote fragment coupling reactions in live microbial cells.


Assuntos
Vias Biossintéticas , Streptomyces , Peptídeos Cíclicos/metabolismo , Streptomyces/metabolismo , Antibacterianos/metabolismo , Lipopeptídeos/metabolismo , Aldeídos/metabolismo , Família Multigênica
9.
Front Microbiol ; 13: 898976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733953

RESUMO

Endophytic microorganisms are an important source of bioactive secondary metabolites. In this study, fungal endophytes obtained from A*STAR's Natural Product Library (NPL) and previously isolated from different habitats of Singapore were investigated for their diversity, antimicrobial, and cytotoxic activities. A total of 222 fungal strains were identified on the basis of sequence analysis of ITS region of the rDNA gene. The identified fungal strains belong to 59 genera distributed in 20 orders. Majority of the identified strains (99%; 219 strains) belong to the phylum Ascomycota, while two strains belonged to the phylum Basidiomycota, and only one strain was from Mucoromycota phylum. The most dominant genus was Colletotrichum accounting for 27% of all the identified strains. Chemical elicitation using 5-azacytidine and suberoylanilide hydroxamic acid (SAHA) and variation of fermentation media resulted in the discovery of more bioactive strains. Bioassay-guided isolation and structure elucidation of active constituents from three prioritized fungal strains: Lophiotrema sp. F6932, Muyocopron laterale F5912, and Colletotrichum tropicicola F10154, led to the isolation of a known compound; palmarumycin C8 and five novel compounds; palmarumycin CP30, muyocopronol A-C and tropicicolide. Tropicicolide displayed the strongest antifungal activity against Aspergillus fumigatus with an IC50 value of 1.8 µg/ml but with a weaker activity against the Candida albicans presenting an IC50 of 7.1 µg/ml. Palmarumycin C8 revealed the best antiproliferative activity with IC50 values of 1.1 and 2.1 µg/ml against MIA PaCa-2 and PANC-1 cells, respectively.

10.
J Am Chem Soc ; 144(4): 1622-1633, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060699

RESUMO

Naturally occurring hydrazones are rare despite the ubiquitous usage of synthetic hydrazones in the preparation of organic compounds and functional materials. In this study, we discovered a family of novel microbial metabolites (tasikamides) that share a unique cyclic pentapeptide scaffold. Surprisingly, tasikamides A-C (1-3) contain a hydrazone group (C═N─N) that joins the cyclic peptide scaffold to an alkyl 5-hydroxylanthranilate (AHA) moiety. We discovered that the biosynthesis of 1-3 requires two discrete gene clusters, with one encoding a nonribosomal peptide synthetase (NRPS) pathway for assembling the cyclic peptide scaffold and another encoding the AHA-synthesizing pathway. The AHA gene cluster encodes three ancillary enzymes that catalyze the diazotization of AHA to yield an aryl diazonium species (diazo-AHA). The electrophilic diazo-AHA undergoes nonenzymatic Japp-Klingemann coupling with a ß-keto aldehyde-containing cyclic peptide precursor to furnish the hydrazone group and yield 1-3. The studies together unraveled a novel mechanism whereby specialized metabolites are formed by the coupling of two biosynthetic pathways via an unprecedented in vivo Japp-Klingemann reaction. The findings raise the prospect of exploiting the arylamine-diazotizing enzymes (AAD) for the in vivo synthesis of aryl compounds and modification of biological macromolecules.


Assuntos
Compostos de Diazônio/química , Hidrazonas/química , Oligopeptídeos/biossíntese , Vias Biossintéticas/genética , Hidrazonas/síntese química , Família Multigênica , Oligopeptídeos/química , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Streptomyces/metabolismo
11.
J Fungi (Basel) ; 7(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34682208

RESUMO

For years, fungi have served as repositories of bioactive secondary metabolites that form the backbone of many existing drugs. With the global rise in infections associated with antimicrobial resistance, in addition to the growing burden of non-communicable disease, such as cancer, diabetes and cardiovascular ailments, the demand for new drugs that can provide an improved therapeutic outcome has become the utmost priority. The exploration of microbes from understudied and specialized niches is one of the promising ways of discovering promising lead molecules for drug discovery. In recent years, a special class of plant-associated fungi, namely, fungal endophytes, have emerged as an important source of bioactive compounds with unique chemistry and interesting biological activities. The present review focuses on endophytic fungi and their classification, rationale for selection and prioritization of host plants for fungal isolation and examples of strategies that have been adopted to induce the activation of cryptic biosynthetic gene clusters to enhance the biosynthetic potential of fungal endophytes.

12.
J Am Chem Soc ; 143(30): 11500-11509, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34293863

RESUMO

Anthraquinone-fused enediynes (AQEs) are renowned for their distinctive molecular architecture, reactive enediyne warhead, and potent anticancer activity. Although the first members of AQEs, i.e., dynemicins, were discovered three decades ago, how their nitrogen-containing carbon skeleton is synthesized by microbial producers remains largely a mystery. In this study, we showed that the recently discovered sungeidine pathway is a "degenerative" AQE pathway that contains upstream enzymes for AQE biosynthesis. Retrofitting the sungeidine pathway with genes from the dynemicin pathway not only restored the biosynthesis of the AQE skeleton but also produced a series of novel compounds likely as the cycloaromatized derivatives of chemically unstable biosynthetic intermediates. The results suggest a cascade of highly surprising biosynthetic steps leading to the formation of the anthraquinone moiety, the hallmark C8-C9 linkage via alkyl-aryl cross-coupling, and the characteristic epoxide functionality. The findings provide unprecedented insights into the biosynthesis of AQEs and pave the way for examining these intriguing biosynthetic enzymes.

13.
mBio ; 12(2)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832972

RESUMO

The broadly conserved cyclic di-AMP (c-di-AMP) is a conditionally essential bacterial second messenger. The pool of c-di-AMP is fine-tuned through diadenylate cyclase and phosphodiesterase activities, and direct binding of c-di-AMP to proteins and riboswitches allows the regulation of a broad spectrum of cellular processes. c-di-AMP has a significant impact on intrinsic ß-lactam antibiotic resistance in Gram-positive bacteria; however, the reason for this is currently unclear. In this work, genetic studies revealed that suppressor mutations that decrease the activity of the potassium (K+) importer KupB or the glutamine importer GlnPQ restore cefuroxime (CEF) resistance in diadenylate cyclase (cdaA) mutants of Lactococcus lactis Metabolite analyses showed that glutamine is imported by GlnPQ and then rapidly converted to glutamate, and GlnPQ mutations or c-di-AMP negatively affects the pools of the most abundant free amino acids (glutamate and aspartate) during growth. In a high-c-di-AMP mutant, GlnPQ activity could be increased by raising the internal K+ level through the overexpression of a c-di-AMP-insensitive KupB variant. These results demonstrate that c-di-AMP reduces GlnPQ activity and, therefore, the level of the major free anions in L. lactis through its inhibition of K+ import. Excessive ion accumulation in cdaA mutants results in greater spontaneous cell lysis under hypotonic conditions, while CEF-resistant suppressors exhibit reduced cell lysis and lower osmoresistance. This work demonstrates that the overaccumulation of major counter-ion osmolyte pools in c-di-AMP-defective mutants of L. lactis causes cefuroxime sensitivity.IMPORTANCE The bacterial second messenger cyclic di-AMP (c-di-AMP) is a global regulator of potassium homeostasis and compatible solute uptake in many Gram-positive bacteria, making it essential for osmoregulation. The role that c-di-AMP plays in ß-lactam resistance, however, is unclear despite being first identified a decade ago. Here, we demonstrate that the overaccumulation of potassium or free amino acids leads to cefuroxime sensitivity in Lactococcus lactis mutants partially defective in c-di-AMP synthesis. It was shown that c-di-AMP negatively affects the levels of the most abundant free amino acids (glutamate and aspartate) in L. lactis Regulation of these major free anions was found to occur via the glutamine transporter GlnPQ, whose activity increased in response to intracellular potassium levels, which are under c-di-AMP control. Evidence is also presented showing that they are major osmolytes that enhance osmoresistance and cell lysis. The regulatory reach of c-di-AMP can be extended to include the main free anions in bacteria.


Assuntos
Antibacterianos/farmacologia , Cefuroxima/farmacologia , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Lactococcus lactis/metabolismo , Potássio/metabolismo , Sistemas do Segundo Mensageiro
14.
Sci Rep ; 11(1): 1952, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479476

RESUMO

Studying the swimming behaviour of bacteria in 3 dimensions (3D) allows us to understand critical biological processes, such as biofilm formation. It is still unclear how near wall swimming behaviour may regulate the initial attachment and biofilm formation. It is challenging to address this as visualizing the movement of bacteria with reasonable spatial and temporal resolution in a high-throughput manner is technically difficult. Here, we compared the near wall (vertical) swimming behaviour of P. aeruginosa (PAO1) and its mutants ΔdipA (reduced in swarming motility and increased in biofilm formation) and ΔfimX (deficient in twitching motility and reduced in biofilm formation) using our new imaging technique based on light sheet microscopy. We found that P. aeruginosa (PAO1) increases its speed and changes its swimming angle drastically when it gets closer to a wall. In contrast, ΔdipA mutant moves toward the wall with steady speed without changing of swimming angle. The near wall behavior of ΔdipA allows it to be more effective to interact with the wall or wall-attached cells, thus leading to more adhesion events and a larger biofilm volume during initial attachment when compared with PAO1. Furthermore, we found that ΔfimX has a similar near wall swimming behavior as PAO1. However, it has a higher dispersal frequency and smaller biofilm formation when compared with PAO1 which can be explained by its poor twitching motility. Together, we propose that near wall swimming behavior of P. aeruginosa plays an important role in the regulation of initial attachment and biofilm formation.


Assuntos
Biofilmes , Pseudomonas aeruginosa/fisiologia , Natação
15.
Environ Microbiol ; 22(7): 2496-2513, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329141

RESUMO

Pseudomonads rely on the flagellar motor to rotate a polar flagellum for swimming and swarming, and to sense surfaces for initiating the motile-to-sessile transition to adopt a surface-dwelling lifestyle. Deciphering the function and regulation of the flagellar motor is of paramount importance for understanding the behaviours of environmental and pathogenic pseudomonads. Recent studies disclosed the preeminent role played by the messenger c-di-GMP in controlling the real-time performance of the flagellar motor in pseudomonads. The studies revealed that c-di-GMP controls the dynamic exchange of flagellar stator units to regulate motor torque/speed and modulates the frequency of flagellar motor switching via the chemosensory signalling pathways. Apart from being a rotary motor, the flagellar motor is emerging as a mechanosensor that transduces surface-induced mechanical signals into an increase of cellular c-di-GMP concentration to initiate the cellular programs required for long-term colonization. Collectively, the studies generate long-awaited mechanistic insights into how c-di-GMP regulates bacterial motility and the motile-to-sessile transition. The new findings also raise the fundamental questions of how cellular c-di-GMP concentrations are dynamically coupled to flagellar output and the proton-motive force, and how c-di-GMP signalling is coordinated spatiotemporally to fine-tune flagellar response and the behaviour of pseudomonads in solutions and on surfaces.


Assuntos
GMP Cíclico/análogos & derivados , Flagelos/metabolismo , Proteínas Motores Moleculares/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas syringae/fisiologia , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Locomoção/fisiologia , Transdução de Sinais
16.
ACS Appl Mater Interfaces ; 12(14): 15989-16005, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32172559

RESUMO

Bacterial colonization of acute and chronic wounds is often associated with delayed wound healing and prolonged hospitalization. The rise of multi-drug resistant bacteria and the poor biocompatibility of topical antimicrobials warrant safe and effective antimicrobials. Antimicrobial agents that target microbial membranes without interfering with the mammalian cell proliferation and migration hold great promise in the treatment of traumatic wounds. This article reports the utility of superhydrophilic electrospun gelatin nanofiber dressings (NFDs) containing a broad-spectrum antimicrobial polymer, ε-polylysine (εPL), crosslinked by polydopamine (pDA) for treating second-degree burns. In a porcine model of partial thickness burns, NFDs promoted wound closure and reduced hypertrophic scarring compared to untreated burns. Analysis of NFDs in contact with the burns indicated that the dressings trap early colonizers and elicit bactericidal activity, thus creating a sterile wound bed for fibroblasts migration and re-epithelialization. In support of these observations, in porcine models of Pseudomonas aeruginosa and Staphylococcus aureus colonized partial thickness burns, NFDs decreased bacterial bioburden and promoted wound closure and re-epithelialization. NFDs displayed superior clinical outcome than standard-of-care silver dressings. The excellent biocompatibility and antimicrobial efficacy of the newly developed dressings in pre-clinical models demonstrate its potential for clinical use to manage infected wounds without compromising tissue regeneration.


Assuntos
Anti-Infecciosos/farmacologia , Queimaduras/tratamento farmacológico , Nanofibras/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Animais , Anti-Infecciosos/química , Bandagens/microbiologia , Queimaduras/microbiologia , Humanos , Indóis/química , Nanofibras/química , Polilisina/química , Polilisina/farmacologia , Polímeros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Suínos , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia
17.
Chem Commun (Camb) ; 56(5): 826, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31897459

RESUMO

Correction for 'Discovery, biosynthesis and antifungal mechanism of the polyene-polyol meijiemycin' by Zhen Jie Low et al., Chem. Commun., 2020, DOI: .

18.
J Am Chem Soc ; 142(4): 1673-1679, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31922407

RESUMO

We report the genome-guided discovery of sungeidines, a class of microbial secondary metabolites with unique structural features. Despite evolutionary relationships with dynemicin-type enediynes, the sungeidines are produced by a biosynthetic gene cluster (BGC) that exhibits distinct differences from known enediyne BGCs. Our studies suggest that the sungeidines are assembled from two octaketide chains that are processed differently than those of the dynemicin-type enediynes. The biosynthesis also involves a unique activating sulfotransferase that promotes a dehydration reaction. The loss of genes, including a putative epoxidase gene, is likely to be the main cause of the divergence of the sungeidine pathway from other canonical enediyne pathways. The findings disclose the surprising evolvability of enediyne pathways and set the stage for characterizing the intriguing enzymatic steps in sungeidine biosynthesis.


Assuntos
Vias Biossintéticas , Enedi-Inos/metabolismo , Antibióticos Antineoplásicos/metabolismo , Família Multigênica
19.
Chem Commun (Camb) ; 56(5): 822-825, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31848534

RESUMO

Produced by a newly isolated Streptomycetes strain, meijiemycin is a gigantic linear polyene-polyol that exhibits structural features not seen in other members of the polyene-polyol family. We propose a biosynthetic mechanism and demonstrate that meijiemycin inhibits hyphal growth by inducing the aggregation of ergosterol and restructuring of the fungal plasma membrane.


Assuntos
Antifúngicos/farmacologia , Álcoois Graxos/farmacologia , Polienos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Candida albicans/efeitos dos fármacos , Descoberta de Drogas , Álcoois Graxos/isolamento & purificação , Álcoois Graxos/metabolismo , Genes Bacterianos , Genômica , Testes de Sensibilidade Microbiana , Família Multigênica , Polienos/isolamento & purificação , Polienos/metabolismo , Policetídeo Sintases/genética , Streptomyces/química
20.
J Biol Chem ; 294(37): 13789-13799, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31350333

RESUMO

The second messenger cyclic diguanylate (c-di-GMP) plays a prominent role in regulating flagellum-dependent motility in the single-flagellated pathogenic bacterium Pseudomonas aeruginosa The c-di-GMP-mediated signaling pathways and mechanisms that control flagellar output remain to be fully unveiled. Studying surface-tethered and free-swimming P. aeruginosa PAO1 cells, we found that the overexpression of an exogenous diguanylate cyclase (DGC) raises the global cellular c-di-GMP concentration and thereby inhibits flagellar motor switching and decreases motor speed, reducing swimming speed and reversal frequency, respectively. We noted that the inhibiting effect of c-di-GMP on flagellar motor switching, but not motor speed, is exerted through the c-di-GMP-binding adaptor protein MapZ and associated chemotactic pathways. Among the 22 putative c-di-GMP phosphodiesterases, we found that three of them (DipA, NbdA, and RbdA) can significantly inhibit flagellar motor switching and swimming directional reversal in a MapZ-dependent manner. These results disclose a network of c-di-GMP-signaling proteins that regulate chemotactic responses and flagellar motor switching in P. aeruginosa and establish MapZ as a key signaling hub that integrates inputs from different c-di-GMP-signaling pathways to control flagellar output and bacterial motility. We rationalized these experimental findings by invoking a model that postulates the regulation of flagellar motor switching by subcellular c-di-GMP pools.


Assuntos
GMP Cíclico/análogos & derivados , Flagelos/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Quimiotaxia/fisiologia , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Metiltransferases/metabolismo , Proteínas Motores Moleculares/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...